Neural Decoding with Hierarchical Generative Models

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Decoding with Hierarchical Generative Models

Recent research has shown that reconstruction of perceived images based on hemodynamic response as measured with functional magnetic resonance imaging (fMRI) is starting to become feasible. In this letter, we explore reconstruction based on a learned hierarchy of features by employing a hierarchical generative model that consists of conditional restricted Boltzmann machines. In an unsupervised ...

متن کامل

Scalable Inference in Hierarchical Generative Models

Borrowing insights from computational neuroscience, we present a family of inference algorithms for a class of generative statistical models specifically designed to run on commonly-available distributed-computing hardware. The class of generative models is roughly based on the architecture of the visual cortex and shares some of the same structural and computational characteristics. In additio...

متن کامل

Learning Hierarchical Features from Deep Generative Models

Deep neural networks have been shown to be very successful at learning feature hierarchies in supervised learning tasks. Generative models, on the other hand, have benefited less from hierarchical models with multiple layers of latent variables. In this paper, we prove that hierarchical latent variable models do not take advantage of the hierarchical structure when trained with some existing va...

متن کامل

An Architecture for Deep, Hierarchical Generative Models

We present an architecture which lets us train deep, directed generative models with many layers of latent variables. We include deterministic paths between all latent variables and the generated output, and provide a richer set of connections between computations for inference and generation, which enables more effective communication of information throughout the model during training. To imp...

متن کامل

Learning Hierarchical Features from Generative Models

Deep neural networks have been shown to be very successful at learning feature hierarchies in supervised learning tasks. Generative models, on the other hand, have benefited less from hierarchical models with multiple layers of latent variables. In this paper, we prove that hierarchical latent variable models do not take advantage of the hierarchical structure when trained with existing variati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Neural Computation

سال: 2010

ISSN: 0899-7667,1530-888X

DOI: 10.1162/neco_a_00047